Understanding Flavor at the LHC

Fermilab Colloquium 15 July 2009

Yossi Nir (Weizmann Institute of Science)

Flavor Physics 1/34

Thanks to my low-energy-physics collaborators:

Gudrun Hiller, YN

JHEP 0803 (2008) 046 [arXiv:0802.0916]

Gudrun Hiller, Yonit Hochberg, YN

JHEP 0903 (2009) 115 [arXiv:0812.0511]

Kfir Blum, Yuval Grossman, YN, Gilad Perez

Phys. Rev. Lett. 102 (2009) 211802 [arXiv:0903.2118]

Yuval Grossman, YN, Gilad Perez

arXiv:0904.0305

Oram Gedalia, Yuval Grossman, YN, Gilad Perez

arXiv:0906.1879

Helen Quinn + YN

'The Mystery of the Missing Antimatter' (PUP)

Flavor Physics 2/34

Thanks to my high- p_t -physics collaborators:

Yuval Grossman, YN, Jesse Thaler, Tomer Volansky, Jure Zupan

Phys. Rev. D76 (2007) 096006 [arXiv:0706.1845]

Jonathan Feng, Christopher Lester, YN, Yael Shadmi

Phys. Rev. D77 (2008) 076002 [arXiv:0712.0674]

Jonathan Feng, Sky French, Christopher Lester, YN, Yael Shadmi arXiv:0906.4215

Feng, French, Galon, Lester, YN, Shadmi, Sanford, Yu 'Identifying the SUSY theory of flavor at the LHC'

Flavor Physics 3/34

Introduction

Why is flavor physics interesting?

- Flavor physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiment}$ FCNC suppressed within the SM by $\alpha_W^n, |V_{ij}|, m_f$
- The Standard Model flavor puzzle:
 Why are the flavor parameters small and hierarchical?
 (Why) are the neutrino flavor parameters different?
- The New Physics flavor puzzle:
 If there is NP at the TeV scale, why are FCNC so small?
 The solution ⇒ Clues for the subtle structure of the NP

Flavor Physics 4/34

Understanding Flavor at the LHC

Plan of Talk

- 1. Introduction
 - The LHC era
- 2. Open questions
 - The NP flavor puzzle
 - The SM flavor puzzle
- 3. What will we learn?
 - Flavor@ATLAS/CMS

Flavor Physics 5/34

Understanding Flavor at the LHC

The LHC Era

Flavor Physics 6/34

The LHC era

The LHC will explore the unknown

Energy
$$0.6 \rightarrow 4 \text{ TeV}$$

Distance
$$10^{-19} \to 10^{-20} \text{ m}$$

"Time"
$$10^{-11} \to 10^{-13} \text{ s}$$

Flavor Physics 7/34

The LHC questions

- What is the mechanism of electroweak symmetry breaking?
- What separates the electroweak scale from the Planck scale?
- What are the dark matter particles?
- What happened at the electroweak phase transition $(10^{-11} \text{ second after the big bang})$?
- Was the baryon asymmetry generated by TeV scale physics?

Flavor Physics 8/34

The LHC era

Flavor at the LHC?

- The scale of flavor dynamics is unknown
- Very likely, it is well above the LHC direct reach

But...

- If new particles that couple to the SM fermions are discovered New flavor parameters can be measured
- Spectrum, flavor decomposition...
- New insights on flavor puzzles are likely

Flavor Physics 9/34

Understanding flavor at the LHC

The NP Flavor Puzzle

Flavor Physics 10/34

What have we learned?

- The KM phase is different from zero (SM violates CP)
- The KM mechanism is the dominant source of the CP violation observed in meson decays
- Complete alternatives to the KM mechanism are excluded (Superweak, Approximate CP)
- No evidence for corrections to CKM
- NP contributions to the observed FCNC are at most comparable to the CKM contributions
- NP contributions are very small in $s \to d, c \to u, b \to d, b \to s$

Flavor Physics 11/34

The SM = Low energy effective theory

- 1. Gravity $\Longrightarrow \Lambda_{\rm Planck} \sim 10^{19} \; GeV$
- 2. $m_{\nu} \neq 0 \Longrightarrow \Lambda_{\text{Seesaw}} \leq 10^{15} \text{ GeV}$
- 3. m_H^2 -fine tuning; Dark matter $\Longrightarrow \Lambda_{\rm NP} \sim TeV$

- The SM = Low energy effective theory
- Must write non-renormalizable terms suppressed by $\Lambda_{\rm NP}^{d-4}$
- $\mathcal{L}_{d=5} = \frac{y_{ij}^{\nu}}{\Lambda_{\text{seesaw}}} L_i L_j \phi \phi$
- $\mathcal{L}_{d=6}$ contains many flavor changing operators

Flavor Physics 12/34

New Physics

- The effects of new physics at a high energy scale $\Lambda_{\rm NP}$ can be presented as higher dimension operators
- For example, we expect the following dimension-six operators:

$$\frac{z_{sd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_{\mu} s_L)^2 + \frac{z_{cu}}{\Lambda_{\rm NP}^2} (\overline{c_L} \gamma_{\mu} u_L)^2 + \frac{z_{bd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_{\mu} b_L)^2 + \frac{z_{bs}}{\Lambda_{\rm NP}^2} (\overline{s_L} \gamma_{\mu} b_L)^2$$

• New contribution to neutral meson mixing, e.g.

$$\frac{\Delta m_B}{m_B} \sim \frac{f_B^2}{3} \times \frac{|z_{bd}|}{\Lambda_{\rm NP}^2}$$

• Generic flavor structure $\equiv z_{ij} \sim 1$ or, perhaps, loop – factor

Flavor Physics 13/34

Some data

$\Delta m_K/m_K$	7.0×10^{-15}
$\Delta m_D/m_D$	8.7×10^{-15}
$\Delta m_B/m_B$	6.3×10^{-14}
$\Delta m_{B_s}/m_{B_s}$	2.1×10^{-12}
ϵ_K	2.3×10^{-3}
$A_{\Gamma}/y_{ m CP}$	≤ 0.2
$S_{\psi K_S}$	0.67 ± 0.02
$S_{\psi\phi}$	≤ 1

Flavor Physics 14/34

High Scale?

• For $z_{ij} \sim 1$ (and $\mathcal{I}m(z_{ij}) \sim 1$), $\Lambda_{\rm NP} \gtrsim \frac{10^{-4}}{\sqrt{\Delta m/m}} \ TeV$

Mixing	$\Lambda_{ m NP}^{ m CPC} \gtrsim$	$\Lambda_{ m NP}^{ m CPV} \gtrsim$
$K - \overline{K}$	$1000~{\rm TeV}$	$20000~{\rm TeV}$
$D - \overline{D}$	$1000~{\rm TeV}$	3000 TeV
$B - \overline{B}$	400 TeV	800 TeV
$B_s - \overline{B_s}$	$70 \mathrm{TeV}$	70 TeV

Flavor Physics 15/34

High Scale?

• For $z_{ij} \sim 1$ (and $\mathcal{I}m(z_{ij}) \sim 1$), $\Lambda_{\rm NP} \gtrsim \frac{10^{-4}}{\sqrt{\Delta m/m}} \ TeV$

Mixing	$\Lambda_{ m NP}^{ m CPC} \gtrsim$	$\Lambda_{ m NP}^{ m CPV} \gtrsim$
$K - \overline{K}$	$1000 \mathrm{TeV}$	$20000~{\rm TeV}$
$D - \overline{D}$	$1000~{\rm TeV}$	$3000~{\rm TeV}$
$B - \overline{B}$	400 TeV	$800 \mathrm{TeV}$
$B_s - \overline{B_s}$	$70 \mathrm{TeV}$	$70 \mathrm{TeV}$

Did we misinterpret the Higgs fine tuning problem?

Did we misinterpret the dark matter puzzle?

Flavor Physics 15/34

Small (hierachical?) flavor parameters?

• For $\Lambda_{\rm NP} \sim 1~TeV, z_{ij} \lesssim 10^8 (\Delta m_{ij}/m)$

Mixing	$ z_{ij} \lesssim$	$\mathcal{I}m(z_{ij}) \lesssim$
$K - \overline{K}$	8×10^{-7}	6×10^{-9}
$D - \overline{D}$	5×10^{-7}	1×10^{-7}
$B - \overline{B}$	5×10^{-6}	1×10^{-6}
$B_s - \overline{B_s}$	2×10^{-4}	2×10^{-4}

Flavor Physics 16/34

Small (hierachical?) flavor parameters?

• For $\Lambda_{\rm NP} \sim 1 \ TeV$, $z_{ij} \lesssim 10^8 (\Delta m_{ij}/m)$

Mixing	$ z_{ij} \lesssim$	$\mathcal{I}m(z_{ij}) \lesssim$
$K - \overline{K}$	8×10^{-7}	6×10^{-9}
$D - \overline{D}$	5×10^{-7}	1×10^{-7}
$B - \overline{B}$	5×10^{-6}	1×10^{-6}
$B_s - \overline{B_s}$	2×10^{-4}	2×10^{-4}

The flavor structure of NP@TeV must be highly non-generic

How? Why? = The NP flavor puzzle

Flavor Physics 16/34

Understanding Flavor at the LHC

The SM Flavor Puzzle

Flavor Physics 17/34

What have we learned?

• $\Delta m_{21}^2 = (7.9 \pm 0.3) \times 10^{-5} \ eV^2$, $|\Delta m_{32}^2| = (2.6 \pm 0.2) \times 10^{-3} \ eV^2$

•
$$\sin^2 \theta_{12} = 0.31 \pm 0.02$$
, $\sin^2 \theta_{23} = 0.47 \pm 0.07$, $\sin^2 \theta_{13} = 0^{+0.08}_{-0.0}$

• Neutrino-flavor is different

Flavor Physics 18/34

The SM flavor puzzle

Smallness and Hierarchy

$$Y_t \sim 1, \quad Y_c \sim 10^{-2}, \quad Y_u \sim 10^{-5}$$
 $Y_b \sim 10^{-2}, \quad Y_s \sim 10^{-3}, \quad Y_d \sim 10^{-4}$
 $Y_\tau \sim 10^{-2}, \quad Y_\mu \sim 10^{-3}, \quad Y_e \sim 10^{-6}$
 $|V_{us}| \sim 0.2, \quad |V_{cb}| \sim 0.04, \quad |V_{ub}| \sim 0.004, \quad \delta_{\rm KM} \sim 1$

- For comparison: $g_s \sim 1$, $g \sim 0.6$, $g' \sim 0.3$, $\lambda \sim 1$
- The SM flavor parameters have structure: smallness and hierarchy
- Why? = The SM flavor puzzle

Flavor Physics 19/34

The Froggatt-Nielsen (FN) mechanism

- Approximate "horizontal" symmetry (e.g. $U(1)_H$)
- Small breaking parameter $\epsilon = \langle S_{-1} \rangle / \Lambda \ll 1$
- $\mathbf{10}(2,1,0), \quad \mathbf{\bar{5}}(0,0,0)$

```
V_{t}: Y_{c}: Y_{u} \sim 1: \epsilon^{2}: \epsilon^{4}
Y_{b}: Y_{s}: Y_{d} \sim 1: \epsilon: \epsilon^{2}
Y_{\tau}: Y_{\mu}: Y_{e} \sim 1: \epsilon: \epsilon^{2}
|V_{us}| \sim |V_{cb}| \sim \epsilon, \quad |V_{ub}| \sim \epsilon^{2}, \quad \delta_{\text{KM}} \sim 1
+
m_{3}: m_{2}: m_{1} \sim 1: 1: 1
|U_{e2}| \sim 1, \quad |U_{u3}| \sim 1, \quad |U_{e3}| \sim 1
```

Flavor Physics 20/34

The SM flavor puzzle

Testing FN with Neutrinos

- The data:
 - $\Delta m_{21}^2 = (7.9 \pm 0.3) \times 10^{-5} \ eV^2$, $|\Delta m_{32}^2| = (2.6 \pm 0.2) \times 10^{-3} \ eV^2$
 - $\sin^2 \theta_{12} = 0.31 \pm 0.02$, $\sin^2 \theta_{23} = 0.47 \pm 0.07$, $\sin^2 \theta_{13} = 0^{+0.08}_{-0.0}$
- The tests:
 - $s_{23} \sim 1$, $m_2/m_3 \sim \epsilon^x$? Inconsistent with FN
 - $s_{23} \sim 1$, $s_{12} \sim 1$, $s_{13} \sim \epsilon^x$?

 Inconsistent with FN
 - $\sin^2 2\theta_{23} = 1 \epsilon^x$? Inconsistent with FN

Flavor Physics 21/34

The SM flavor puzzle

Neutrino Mass Anarchy

- Facts:
 - $\sin \theta_{23} \sim 0.70 > \text{any } |V_{ij}|$
 - $\sin \theta_{12} \sim 0.56 > \text{any } |V_{ij}|$
 - $m_2/m_3 \gtrsim 1/6 > \text{any } m_i/m_j \text{ for charged fermions}$
 - $\sin \theta_{13} \sim 0.1$ is still possible
- Possible interpretation:
 - Neutrino parameters are all of O(1) (no structure): Neutrino mass anarchy
 - Consistent with FN
 - Close to GUT+FN predictions: $s_{23} \sim \frac{m_s/m_b}{|V_{cb}|} \sim 1; \quad s_{12} \sim \frac{m_d/m_s}{|V_{us}|} \sim 0.2; \quad s_{13} \sim \frac{m_d/m_b}{|V_{ub}|} \sim 0.5$

Flavor Physics 22/34

Structure is in the eye of the beholder

$$|U|_{3\sigma} = \begin{pmatrix} 0.79 - 0.86 & 0.50 - 0.61 & 0.0 - 0.2 \\ 0.25 - 0.53 & 0.47 - 0.73 & 0.56 - 0.79 \\ 0.21 - 0.51 & 0.42 - 0.69 & 0.61 - 0.83 \end{pmatrix}$$

• Tribimaximal-ists:

$$|U|_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0\\ \sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2}\\ \sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

• Anarch-ists:

$$|U|_{\text{anarchy}} = \begin{pmatrix} \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \\ \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \\ \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \end{pmatrix}$$

Flavor Physics 23/34

Understanding Flavor at the LHC

What will we learn?

Flavor Physics 24/34

What will we learn?

Flavor Physics at the LHC era

- If ATLAS/CMS observe no NP...
- and flavor factories observe no NP...

Flavor Physics 25/34

What will we learn?

Flavor Physics at the LHC era

- If ATLAS/CMS observe no NP...
- but flavor factories observe NP...
 - We may have misinterpreted the fine-tuning problem
 - We may have misinterpreted the dark matter puzzle
 - Flavor will provide the only clue for an accessible scale of NP

Flavor Physics 26/34

Flavor Physics at the LHC era

ATLAS/CMS will, hopefully, observe NP at $\Lambda_{\rm NP} \lesssim TeV$; In combination with flavor factories, we may...

- Understand how the NP flavor puzzle is (not) solved \Longrightarrow Probe NP at $\Lambda_{\rm NP} \gg TeV$
- Get hints about the solution to the SM flavor puzzle

Flavor Physics 27/34

Gauge+Gravity Mediation

- Example: High (but not too high) scale gauge mediation
 - Gravity mediation sub-dominant but non-negligible

•
$$r = \frac{\text{gravity-med}}{\text{gauge-med}} \sim \left(\frac{m_M}{m_{\text{Pl}}}\right)^2 \left(\frac{4\pi}{\alpha_3(m_M)}\right)^2 \frac{3}{8n_M}$$

- $\bullet \ \widetilde{M}_{\tilde{Q}_L}^2(m_M) = \tilde{m}_{\tilde{Q}_L}^2(\mathbf{1} + rX_{\tilde{Q}_L})$
- Degeneracy depends on r

Assume: The flavor structure of X determined by FN:

•
$$X_{\tilde{Q}_L} \sim \begin{pmatrix} 1 & V_{us} & V_{ub} \\ \cdot & 1 & V_{cb} \\ \cdot & \cdot & 1 \end{pmatrix}; \quad X_{\tilde{D}_R} \sim \begin{pmatrix} 1 & \frac{m_d/m_s}{V_{us}} & \frac{m_d/m_b}{V_{ub}} \\ \cdot & 1 & \frac{m_s/m_b}{V_{cb}} \\ \cdot & \cdot & 1 \end{pmatrix}$$

• Mixing depends only on X which is related to the SM flavor

Flavor Physics 28/34

Measuring small mass splitting + mixing

$$\chi_1^0 \to \tilde{\ell}_1^{\pm} e^{\mp} \text{ or } \tilde{\ell}_2^{\pm} \mu^{\mp}; \quad \tilde{\ell}_2^{\pm} \to \tilde{\ell}_1^{\mp} (\ell^{\pm} \ell^{\pm})_{\text{soft}} \text{ or } \tilde{\ell}_2^{\pm} \to \tilde{\ell}_1^{\pm} (\ell^{\pm} \ell^{\mp})_{\text{soft}}$$

$$m(\tilde{\ell}_1^{\pm} e^{\mp}) = m_{\chi_1^0}$$

$$m(\tilde{\ell}_1^{\pm}\mu^{\pm}) = m_{\chi_1^0} - E_{\text{shift}}$$

$$\Delta m = \frac{2m_{\chi_1^0} m_{\tilde{\ell}}}{m_{\chi_1^0}^2 + m_{\tilde{\ell}}^2} E_{\text{shift}}$$

Flavor Physics 29/34

Solving the NP Flavor Puzzle

If ATLAS/CMS observe squarks and sleptons...

- Determine the sfermion mass scale (\tilde{m})
- Determine the sfermion mass splitting $(m_{\tilde{f}_i} m_{\tilde{f}_i})$
- Determine the sfermion flavor decomposition (K_{ij})

Learn how the SUSY flavor suppression is obtained

Flavor Physics 30/34

Physics at $\Lambda_{\rm NP} \gg \Lambda_{\rm LHC}$

If ATLAS/CMS determine sfermion mass splittings...

- Find the ratio between gravity- and gauge-mediated contributions (r)
- Determine the messenger scale of gauge mediation (m_M)
- Find the hierarchy between the GMSB and see-saw scales

Probe physics at $m_M \sim 10^{15} \; GeV$

Flavor Physics 31/34

Solving the SM Flavor Puzzle?

If ATLAS/CMS determine sfermion flavor decomposition...

- Determine X of $\tilde{M}^2 = \tilde{m}^2(\mathbf{1} + rX)$
- \bullet Does X have the FN-predicted structure?

Test theories that explain the SM flavor structure

Flavor Physics 32/34

The NP flavor plane

Flavor Factories

Flavor Physics 33/34

The NP flavor plane

Flavor Physics 33/34

What will we learn?

- ATLAS/CMS and flavor factories give complementary information
- In the absence of NP at ATLAS/CMS flavor factories will be crucial to find $\Lambda_{\rm NP}$
- With NP at ATLAS/CMS –

 The NP flavor puzzle is likely to be understood \implies A probe of physics at $\Lambda_{\rm NP} \gg \Lambda_{\rm LHC}$
- With supersymmetry –

 The SM flavor puzzle may be solved

Flavor Physics 34/34

Understanding Flavor at the LHC

Backup Transparencies

Flavor Physics 35/34

A brief history of FV

- $\Gamma(K \to \mu\mu) \ll \Gamma(K \to \mu\nu) \implies \text{Charm [GIM, 1970]}$
- $\Delta m_K \implies m_c \sim 1.5~GeV$ [Gaillard-Lee, 1974]
- $\varepsilon_K \neq 0 \implies \text{Third generation [km, 1973]}$
- $\Delta m_B \implies m_t \gg m_W$ [Various, 1986]

Flavor Physics 36/34

Why is CPV interesting?

- Within the SM, a single CP violating parameter η : In addition, QCD = CP invariant (θ_{QCD} irrelevant) Strong predictive power (correlations + zeros) Excellent tests of the flavor sector
- η cannot explain the baryon asymmetry a puzzle: There must exist new sources of CPV Electroweak baryogenesis? (Testable at the LHC) Leptogenesis? (Window to $\Lambda_{\rm seesaw}$)

Flavor Physics 37/34

A brief history of CPV

- 1964 2000
 - $|\varepsilon| = (2.284 \pm 0.014) \times 10^{-3}$; $\Re(\varepsilon'/\varepsilon) = (1.67 \pm 0.26) \times 10^{-3}$

Flavor Physics 38/34

A brief history of CPV

- 1964 2000
 - $|\varepsilon| = (2.284 \pm 0.014) \times 10^{-3}$; $\Re(\varepsilon'/\varepsilon) = (1.67 \pm 0.26) \times 10^{-3}$
- \bullet 2000 2009
 - $S_{\psi K_S} = +0.67 \pm 0.02$
 - $S_{\eta'K_S} = +0.61 \pm 0.07$, $S_{\pi^0K_S} = +0.57 \pm 0.17$, $S_{\rho^0K_S} = +0.63 \pm 0.17$, $S_{f_0K_S} = +0.62 \pm 0.11$
 - $S_{K^+K^-K_S} = -0.74 \pm 0.11$
 - $S_{\pi^+\pi^-} = -0.61 \pm 0.08, C_{\pi^+\pi^-} = -0.38 \pm 0.06$
 - $S_{\psi\pi^0} = -0.93 \pm 0.15$, $S_{D^+D^-} = -0.89 \pm 0.26$
 - $\bullet \ \mathcal{A}_{K^{\mp}\rho^0} = +0.37 \pm 0.11, \, \mathcal{A}_{\eta K^{\mp}} = -0.27 \pm 0.09, \, \mathcal{A}_{f_2 K^{\mp}} = -0.68 \pm 0.20$
 - $\mathcal{A}_{K^{\mp}\pi^{\pm}} = -0.098 \pm 0.012, \, \mathcal{A}_{\eta K^{*0}} = +0.19 \pm 0.05$

• . . .

Flavor Physics 38/34

$Flavor@GeV \Longrightarrow NP@TeV$

A recent example [Blum et al, 0903.2118, PRL in press]

•
$$\frac{\Delta m_K}{m_K} = (7.01 \pm 0.01) \times 10^{-15}; \quad \epsilon_K = (2.23 \pm 0.01) \times 10^{-3}$$

•
$$\frac{\Delta m_D}{m_D} = (8.6 \pm 2.1) \times 10^{-15}; \quad A_{\Gamma} = (1.2 \pm 2.5) \times 10^{-3}$$

- Consider $\frac{1}{\text{TeV}^2} \left[\overline{Q_{Li}}(X_Q)_{ij} \gamma_{\mu} Q_{Lj} \right]^2$
- Take $Y_d = \lambda_d$, $Y_u = V^{\dagger} \lambda_u$, $X_Q = V_d^{\dagger} \operatorname{diag}(\lambda_1, \lambda_2) V_d$
- $K + D \implies \text{Degeneracy: } \lambda_2 \lambda_1 \leq 0.004 0.0005$
 - Supersymmetry: $\frac{m_{\tilde{Q}_2} m_{\tilde{Q}_1}}{m_{\tilde{Q}_2} + m_{\tilde{Q}_1}} \le 0.27 0.034$
 - RS-I: $\sqrt{\frac{\text{TeV}}{m_{KK}}} f_{Q_2} \lesssim 0.06 0.02$.

Flavor Physics

39/34

CP Violation

A beautiful relation

- Assume no direct CP violation
- A surprising relation: $y \tan \phi = x(1 |q/p|)$

Grossman et al., arXiv:0904.0305

$$\downarrow$$

$$K$$
 $\arg(\epsilon) = \arctan(-x/y)$

$$B_s$$
 $A_{\rm SL}^s = -2|y/x|S_{\psi\phi}/(1-S_{\psi\phi}^2)^{1/2}$

$$D \qquad (1 - |q/p|)/\tan \phi = y/x$$

Flavor Physics 40/34

The Standard Model

Flavor Violation (FV)

- $\mathcal{L}_{\text{kinetic+gauge}} + \mathcal{L}_{\text{Higgs}}$ has a large global symmetry: $G_{\text{global}} = [U(3)]^5$
- $\mathcal{L}_{\text{Yukawa}} = \overline{Q_L}_i Y_{ij}^u \tilde{\phi} U_{Rj} + \overline{Q_L}_i Y_{ij}^d \phi D_{Rj} + \overline{L_L}_i Y_{ij}^e \phi E_{Rj}$ breaks $G_{\text{global}} \to U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$
- Flavor physics: interactions that break the $[SU(3)]^5$ symmetry

- $Q_L \to V_Q Q_L$, $U_R \to V_U U_R$, $D_R \to V_D D_R$ = Change of interaction basis
- Can be used to reduce the number of parameters in Y^u, Y^d

Flavor Physics 41/34

Kobayashi and Maskawa

The number of real and imaginary quark flavor parameters:

• With two generations:

$$2 \times (4_R + 4_I) - 3 \times (1_R + 3_I) + 1_I = 5_R + 0_I$$

• With three generations:

$$2 \times (9_R + 9_I) - 3 \times (3_R + 6_I) + 1_I = 9_R + 1_I$$

• The two generation SM is CP conserving The three generation SM is CP violating

CP violation = a single imaginary parametr in the CKM matrix:

• V unitary with 3 real (λ, A, ρ) and 1 imaginary (η) parameters:

$$V \simeq \begin{pmatrix} 1 & \lambda & A\lambda^3(\rho + i\eta) \\ -\lambda & 1 & A\lambda^2 \\ A\lambda^3(1 - \rho + i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Flavor Physics 42/34

$S_{\psi K_S}$

- Babar/Belle: $A_{\psi K_S}(t) = \frac{\frac{d\Gamma}{dt} [\overline{B_{\text{phys}}^0}(t) \to \psi K_S] \frac{d\Gamma}{dt} [B_{\text{phys}}^0(t) \to \psi K_S]}{\frac{d\Gamma}{dt} [\overline{B_{\text{phys}}^0}(t) \to \psi K_S] + \frac{d\Gamma}{dt} [B_{\text{phys}}^0(t) \to \psi K_S]}$
- Theory: $A_{\psi K_S}(t)$ dominated by interference between $A(B^0 \to \psi K_S)$ and $A(B^0 \to \overline{B^0} \to \psi K_S)$
- $\Longrightarrow A_{\psi K_S}(t) = S_{\psi K_S} \sin(\Delta m_B t)$ $\Longrightarrow S_{\psi K_S} = \frac{1}{|A(B^0 \to \overline{B^0})|} \mathcal{I}m \left[\frac{A(B^0 \to \overline{B^0})A(\overline{B^0} \to \psi K_S)}{A(B^0 \to \psi K_S)} \right]$
- SM: $S_{\psi K_S} = \mathcal{I}m \left[\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \frac{V_{cb} V_{cd}^*}{V_{cb}^* V_{cd}} \right] = \frac{2\eta (1-\rho)}{\eta^2 + (1-\rho)^2}$
- The approximations involved are better than one percent!
- Experiments: $S_{\psi K_S} = 0.671 \pm 0.024$

Testing CKM – Take I

- Assume: CKM matrix is the only source of FV and CPV
- λ known from $K \to \pi \ell \nu$ A known from $b \to c \ell \nu$
- Many observables are $f(\rho, \eta)$:

$$-b \rightarrow u\ell\nu \implies \propto |V_{ub}/V_{cb}|^2 \propto \rho^2 + \eta^2$$

$$-\Delta m_{B_d}/\Delta m_{B_s} \implies \propto |V_{td}/V_{ts}|^2 \propto (1-\rho)^2 + \eta^2$$

$$-S_{\psi K_S} \implies \frac{2\eta(1-\rho)}{(1-\rho)^2+\eta^2}$$

- $-S_{\rho\rho}(\alpha)$
- $-\mathcal{A}_{DK}(\gamma)$
- $-\epsilon_K$

Flavor Physics 44/34

The flavor-factories plot

CKMFitter

Very likely, the CKM mechanism dominates FV and CPV

Flavor Physics 45/34

Testing CKM - take II

- Assume: New Physics in leading tree decays negligible
- Allow arbitrary new physics in loop processes
- Use only tree decays and $B^0 \overline{B}^0$ mixing
- Define $h_d e^{2i\sigma_d} = \frac{A^{\text{NP}}(B^0 \to \overline{B})}{A^{\text{SM}}(B^0 \to \overline{B})}$
- Use $|V_{ub}/V_{cb}|$, \mathcal{A}_{DK} , $S_{\psi K}$, $S_{\rho\rho}$, Δm_{B_d} , $\mathcal{A}_{\mathrm{SL}}^d$
- Fit to $[\eta]$, ρ , $[h_d]$, σ_d
- Find whether $\eta = 0$ is allowed If not \Longrightarrow The KM mechanism is at work
- Find whether $h_d \gg 1$ is allowed If not \Longrightarrow The KM mechanism is dominant

Flavor Physics 46/34

$$\eta \neq 0$$
?

• The KM mechanism is at work

Flavor Physics 47/34

$$h_d \ll 1$$
?

- The KM mechanism dominates CP violation
- The CKM mechanism is a major player in flavor violation

Flavor Physics 48/34

The NP flavor puzzle

Minimal flavor violation (MFV)

- MFV = the only source of FV are the SM Yukawa matrices
- MFV \Longrightarrow NP@TeV scale is consistent with FCNC constraints
- Most likely, an approximation
- Predictions:
 - Spectrum: often MFV implies degeneracies
 - Mixing: the third generation is approximately decoupled
- Example: Gauge mediated supersymmetry breaking
 - Squark spectrum: 2 + 1
 - Squark decays: $\tilde{q}_{1,2} \to q_{1,2}, \quad \tilde{q}_3 \to q_3$
- In principle, testable in ATLAS/CMS

Flavor Physics 49/34

The FN mechanism: Predictions (quarks)

- In the quark sector: 8 FN charges, 9 observables
- One prediction that is independent of charge assignments:

$$|V_{ub}| \sim |V_{us}V_{cb}|$$

Experimentally correct to within a factor of 2

• In addition, six inequalities:

$$|V_{us}| \gtrsim \frac{m_d}{m_s}, \frac{m_u}{m_c}; \quad |V_{ub}| \gtrsim \frac{m_d}{m_b}, \frac{m_u}{m_t}; \quad |V_{cb}| \gtrsim \frac{m_s}{m_b}, \frac{m_c}{m_t}$$
 Experimentally fulfilled

• When ordering the quarks by mass:

 $V_{CKM} \sim 1$ (diagonal terms not suppressed parameterically) Experimentally fulfilled

Flavor Physics 50/34

The FN mechanism: Predictions (leptons)

- In the lepton sector: 5 FN charges, 9 observables
- Four predictions that are independent of charge assignments:

$$\frac{|m_{\nu_i}/m_{\nu_j} \sim |U_{ij}|^2}{|U_{e3}| \sim |U_{e2}U_{\mu 3}|}$$

• In addition, three inequalities:

$$|U_{e2}| \gtrsim \frac{m_e}{m_{\mu}}; \quad |U_{e3}| \gtrsim \frac{m_e}{m_{\tau}}; \quad |U_{\mu 3}| \gtrsim \frac{m_{\mu}}{m_{\tau}}$$

• When ordering the leptons by mass:

$$U \sim 1$$

Flavor Physics 51/34